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ABSTRACT
An arbitrary nonlinear sys tem wi th input a Gaussian process , wh ich is

such that its output process has finite second moments, admits two kinds of__ representations; the first in terms of a sequence of deterministic kernels
and the second in terms of a single stochastic kernel. We consider here the___ ~~ identification of the sequence of deterministic kernels from the input and

— output processes , the representation of the system output when its input is

~~~ 

a sample function of the Gaussian process , and the relationsh ip of the se-
quence of kernels mentioned above to the Volterra expansion kernels when
the sys tem has a Volterra representation.

1. STOCHASTIC AND MULTIPLE WIENER INTEGRALS
1: FOR GAUSSIAN PROCESSES

Let us first introduce our basic notation and terminology . We will
consider throughout a zero mean Gaussian process X = (X~, tET) with covar-
jance function R(t,s), defined , on a probability space (~2,B,P). T will be an
interval of the real line. B is usually taken to be 8(X), the ~—fie1d gen-erated by the process X , or 8(X) , the completion of 8(X). There are two
important Hu bert spaces associated to a Gaussian process. The nonlinear
space of X, L2

(X) = L
2(~ ,

B(X),P), consists of all 8(X)-measurable random var-

iables w ith fini te second moment which are called (nonlinear) L
2-
functionals

of X. Thc linear space of X, 11(X), is the closed subspace of L
2(X) spanned

by X~, t~T, and its elements are called linear L
2
-functionals of X.

The f irst  useful notion in the study of the nonlinear space of a Wiener
process is the Multi ple Wiener Integral.  This notion was f i rs t  introduced
by Wiener (1938), who termed it “Polynomial Chaos,” and was redefined in a
somewhat deeper wa~ by it6 (1951). Ito showed that his multiple integrals
of different degree have, the important property of being mutually orthogonal
and also presented their connection with the celebrated Eourier4lermite ex-
pansion of L2-functionals of Cameron and Martin (1947). In his important

work on nonlinear problems Wiener (1958) reinterpreted the multiple Wiener
integrals for a Wiener process in an extremely simple and intuitive way and
made some interesting applications.

In [4] multiple Wiener integrals of the following two types are defined
for general Gaussian processes:

I~ (f~) = f J  f(t1,. . ~~~~~~~~~ 
. .dX~

J~(f~) = f • • • J  
~~~~~~~~~~~~~~~~~ 

dt1...dt~

where p = 1,2,..., and we always write f for We always assume that

c = 0 a.s. for some t
0
cT when dealing with integrals I , and that X isp .—

. )

wean ~~uare continuous when dealing with integrals Jr, .

“qr~v ~ *t $ ’ 7  ~ ‘~r ~
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The integrands f(t11. 
. .,t~,) belong to appropriate Hu bert spaces of ~~~~~~~~~~

“functions” defi ned on T~, which are denoted by A
2(0

1’R) for I , and A2(O~!~)

for J~. For instance X2(R) is the completion of the set of all functions

f ( t )  on I which are such that the Riemann integral Rfff(t)f(s) R(t,s)d t ds
exists and is finite with respect to the inner product

<f ,g> = Rfff(t)f(s) R(t,s)dt ds

When I = [a ,b], X2(R) contains all 
square integrable functions over T, as

well as further interesting classes of functions (see [4]), but also “func-
tions’1 with properties similar to those of delta functions. A

2
(ePR) is de-

fined similar ly ,  and is isomorphic to the tensor product &~A 2 (R) under the
natural correspondence.

The multip le Wiener integrals J~,, p=l,2,..., have the following proper-
ties (f,gEA 2

(ØPR) and a,b real numbers):

J~ (af+bg) = aJ~ (f) + bJ~ (g) , . a”
J~(f) = J~(~)

<J~(f)~ J~ (~ )>~2 (~) = PI<fJ~
>
~~(ØP~) , ::. 

where £ is the symmetric version of f ,

<J
pWJJq~~~

>L ( x) = 0 if p ~ q , / ,
~

~~l -  -~~~‘k 
I ,

~~~‘‘ ‘~~~ 4’k ~ 
= H

P
(f
~l

(t)X
~
dt)...H

P
(fct k

(t)X
t
dt) , 

. - . .

where 
~~~~~~ 

. . ,4 ~ are orthonormal in X 2 (R) , p1+ . .+p~ = p, H~ denote the Her-
mite polynomials, and ~ denotes symmetric tensor product.

Also every L2-functional 0 of X, 0eL2(X) , has an orthogonal development

0= E (0)+~~~J ( f )
p=l p P

where f~cA 2(ø
PR)~ and if

O-E(0) = ~~J ( f )  = ~~J (g )
p=l p P ~~1 P P

then = 

~~~
,
, p=l,2 .

The second useful notion in the study of the nonlinear space of a Wiener
process is the stochastic integral. The stochastic integral was first intro-
duced by ItS (1944) for the Wiener process and later generalized by Meyer
for martingales. Every L2-functional of a Wiener process has a representa-
tion as a stochastic integral, where the integrand is adapted to the
Wiener process. .

.. . -  ~~~~~~~~~~~~~~~~ -—~~~~~~~~~~~~ .~~~~~~~~~~~~



In [41 a stochastic thtegral

1( f) = ff(t)dXt

is defined for L2(X)-valued “functions” f(t) belonging to the HUbert space

A2 L  x~
(R)i which is defined in a way similar to A2(R) and is isomorphic to

‘ 2~ 
‘

the tensor product A2(R)0L2(X) under the correspondence g <—>
~~~~~~~~~, 4~ A

2
(R) ,

F~cL2(X). The stochastic integral

1: A2L(x )(R) 
-
~~ L2(X)

is an unbounded densely defined closed linear map with range the set of all
zero mean random variables in L2(X) (for further properties and some evalu-
ations of the stochastic integral see [4]). Thus every L2-functional 0 of X,

admits the representation

0 = E(0) + f f(t)dX~
for some (non-unique) fEA 2.L ~ 

(R) in the domain of 1, and f may be taken to

be adapted to X (“adapted to” meaning “measurable with respect to the past
of”). Notice that as shown in [4], the stochastic integral becomes norm
preserving when restricted to nonanticipatory integrands, but it is not yet
known which L2-functionals admit nonanticipatory stochastic integral repre-
sentations (“nonanticipatory” meaning “independent of the future increments
of X”).

2. NONLINEAR SYSTEMS WITH GAUSSIAN INPUTS

Let 0 be a nonlinear system with input the Gaussian process X = {x
~
,teT}

and output the process Y = {Yt,teT} (the parameter sets of the input and

output processes could of course be distinct). The only assumption we make
on the nonlinear system without further notice is that it is such that the
process Y is of second order, i.e. each is an L2.-functional of X. Then
from Section 1, we have two representations of the system 0 for the input X.
The first is a series representation in terms of multiple Wiener integrals

• = E(Yt) +~~f•••J 
f~(t;t11.. .i t~

)X
~ 

...Xt dti. ..dt~ (1)

where f~(t;.)EA2(&’R) may (and will from now on) be taken to be symmetric.
The second is a stochastic integral representation

= E(Yt) + f f(t;s)X5ds (2)

where f(t;.)EA2.L (x~
CR) may be taken to be adapted to X. Thus the system

‘ 2~ 
-‘

0 can be represented for the input X either by the sequence of deterministic
kernels f~ (t ;t 11...~ t~)~ p=l ,2 ,..., as in (1) , or by the single stochastic
kernel f(t,s) as in (2). It should be emphasized that both, the sequence of
deterministic kernels {f~} and the stochastic kernel f, depend not only on 

_ _ _  _ _ _
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the system 0 but also on the input Gaussian process X. Thus distinct input
processes will always produce distinct stochastic kernels (unless of course
the system is linear) in representation (2), and will in general produce
distinct sequences of deterministic kernels in representation (1).

From now on we concentrate on the representation (1). Notice that cx-
pansion (1) looks very much like a Volterra kernel expansion, with the im-
portant difference that the multiple integrals are multiple Wiener rather
than Lebesgue integrals; it could thus be considered as a stochastic Volterra
kernel expansion. Several system synthesis or identification problems natu-
rally suggest themselves at this point :

(P1) Knowing the input and output processes X and Y, find the kernels
f~1 p= 1,2 

(P2) Knowing the kernels ~~ p=l ,2,..., in the representation of the

system for the Gaussian input X, can one represent the output of
the system to another Gaussian input or to a deterministic input?

(P3) Assuming that the system 0 when acting on deterministic inputs
in, say, L2[a,b] has a Volterra kernel expansion

y(t) = k0 (t) + ~~Lf ..fk~(t;t 1~. . .,t~)x( t1). ..x(t~)dt1. ..dt (3)

where L denotes Lebesgue integral , y = 0(x) and k~EL2([a~b]
P).

what is the relationship between the sets of kernels {f }, and

In the following we consider problems (P1) and (P3), which are straightfor-
ward, and we begin an exploration of the seemingly harder problem (P2). The
analysis is based on the structure developed in [4].

We begin with problem (P1). Let (4~ } be any complete orthonormal set
in A2(R).. Then we have for every tET (omitting the arguments t1,. .., t~,

)

• 
~1
’”
~~
’k ~

‘l~~ —f~ (t) = ~ a ( t) • ~~~~~~~~ 4
~r~ 

(4)

where the sum is taken over all k=1,...,p, 
~~~~~~~~~~ 

and 
~l

’ • ’
~k 

=

1,2,... and converges in X2(&’R), and the coefficients are given by

~~pl l.
~ •pk!afl1.. ~~

(t) = p 1 <f~(t)~ $~ 
0..  0

= E{J (f (t))J ($ 0.. .0 $ )}p p p n1

= E{Y tH (141 (s)X ds) . . .H~ (f$ (s)X ds)} . (5)

• Hence from the input and output processes X and V we can find the coeffi-
den ts a from (5) and thus the kernels f~(t) from (4). Notice that the 

~ • .• • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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functions 41~(t) can be chosen by orthonormalizing (in A2(R) of course) any

set of functions complete in L2(T); or else by putting 4~ = X~~e~ where

and {e~} are the elgenvalues and eigenfunctions of R(t,s) [1]. This method
of determining f~ has of course all the usual disadvantages of a series ex-

pansion. When I = (~~c ,+oo), X is stationary and f~(t;t1~. . . ,t~~) = f~(t1
_t .

p=l ,2,..., then a somewhat simpler method for approximating

can be found but we will not go into this here.

Problem (P2) is the most interesting as well as the most difficult one.
Of course, if one is willing to put strong assumptions on the system, like
those in problem (P3), then, as we shall see, the situation is fairly
straightforward. Thus the main point of problem (P2) is to investigate con-
ditions on the system, much weaker than those made in problem (P3), under
which appropriate positive answers to problem (P2) can be given. Here we
consider only the relationship of the representation of the system for the
Gaussian input X to its representation for a deterministic input which is a
sample function of X.

From (1) and (4) we have

- E (Yt) 
= ~~ Cf ~p=1 ~ p

~~~ ‘~ k ~ ~ ‘l— —
= a 

~ 
(t)J &. . .04

p=l k=1,. . . ‘p 1”’ k p 1 k
P1”~ ’ ~~~~

‘ ‘.“

Then writing H (
~) = ~‘? 0~!~”, for a standard normal random variable ~, we

have ~

~~l- -~~~kJ (41 0...041 ) = H  (~ 
)...H (

~ )p “k ~‘l 
fl~[ ~k ~k

~
‘l 1’k 31 3k

= 
~~~. ...~~~ .

s1=O,...,p1 ~i 
3k 1

~l ~k ~~l— -~~~k= c. ...c. Lf...f(+ 0. ..041 )(ti,...,t.)Xt ...X~1 k 1 K 1
i=1,...,k dt ....dt .1 3

where 
~~~~~~~~~~ 

and if we define

N q+N 
~‘l 1’k ~1”h(t;t1,...,t ) = Z c. . .  .c. a (t)q p=q k=1,...,p 

~1~~~
’
~~k

”
~ 

3 i 3k 1 ”’1k
nl,...,nk=l,...,N j1

+...+j~=q

~~~ —
0
~k

1~~i T’k 
I (t it~ tq)
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we obtain by a simple rearrangement of terms

- E (Y~) = 
q~O 

~~~ Lf...fh~ (t;t 1,.. •~
t
q

)X
t~~~

•X t
dti•~~

dt
q (6)

Since the convergence in (6) is in mean square, along some subsequence we
will have convergence with probability one. Thus we can write

N

- E (Y~) = 

~~ q~: 
Lf•••fhq

”(t;t11 . ••~
tq)X t ‘

~ tq~~l ’ .dt~ a.s. (7)

Thus for almost every sample function of the process X, the output of the
system can be represented by (7). Notice that the kernels hN in (7) can be

found from the kernels f~ and that hq(t;t 1~ . . - t~,) 
are continuous fur~ctions

in t1,... ,t~, if we choose (as we can) the functions 41~(t) to be continuous.

Hence knowing the representation of the system output to a Gaussian input we
can find the representation of the system output for a certain class of
deterministic inputs, namely almost all sample functions of the Gaussian
process. This deterministic input-output representation, given by (7), de-
pends of course on the covariance R of the Gaussian process in the follow-
ing two ways:

(i) R determines the kernels h~ of the representation (7), and

(ii) R determines, up to a zero probability set, the deterministic
functions for which representation (7) is valid.

Representation (7) has the following two remarkable features. First, even
though it is valid for a small class of deterministic inputs and its kernels

• depend on that class, it was obtained under extremely weak assumptions on

the system, namely E (Y~) < ~~~. Second it is identical in form to the repre-
sentation

NN .n N
y(t) = lim {k0~’(t) + ~~~~L f • s • f k

q
~~(t;t 1~~~. .  ~ tq)X(t1)•••X(tq)dt1••~ dtq}q- . (8)

obtained by Fr~chet (1910) for all x(t) in C[a,b] or in L2[a,b] under the
assumption that the system is continuous, in the sense that for each fixed
t, y(t) is a continuous functional on C[a,b] or L2[a,b]; in (8) the kernels
N .kq depend only on the system and not on the particular input x(t) in

C[a,b] or in L2[a,b]. It is thus remarkable that a representation like (8),
valid not for all but only for some functions in L2[a,b] (or in C[a,b] if
X has continuous sample functions), was derived with no continuity assump-
tions on the system.

If , furthermore, it turns out that for each q=l ,2,..., the kernels
h~(t) converge in L2([a,b]~ ) to hq(t) (which constitutes an additional re-
striction on the system) then (6) and thus (7) may be simplified to

N

- E(~~) = u r n  Z LJ”.Jh (t;t1,. . ., t )X t - . .X~ dt1. . .dt a.s. (9)q q q q



4•~~~~~~ t.J~_._ 
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t~inal1y, we should remark that if the system acting on the Gaussian
input X is of finite order P, in the sense that in (1) f~ = 0 for p > P.

- E(Y~) = ~ J...ff~(t ;t1~. .., t )X~~. ..X~~dtj...dt , (10)

then it has the same order P when acting on the sample functions of X, in
the sense that (7) is written as

P N
- E (Y~) = u r n  ~ 1 ”fh 

n(t;t ..,t )X~ .. .X~ dt1...dt a.s. (11)
n-lco p .0 p p 1 p p

and if, furthermore, each h (t) converges in L2([a,b]~) to h (t) we have

- E(Yt) = 1 J•••fh (t;t 1,. .. ,t~)X t . . .X t dt1.. .dt~ a.s. (12)

It may be checked (even though the calculations are somewhat messy) that in
the latter case we always have

h~ = f~ and h~~1 = f~~~1

the assumption on the convergence of the hN(t)~s implying that the kernels
f~(t) belong to L2([a,b]P) .  p

We finally consider problem (P3) which consists in finding the kernels
(k} when the kernels Cf~~} are known, and vice versa. From (3) we have

= k0(t) ÷ ~ 
U .. .fk~(t;t 1~ .. .i t~

)X t . . .X~ dt1. . .dt a.s. (13)
p=l 1 p

On the other hand representation (1) implies (7) which in view of (13) can
be written as in (9). Now it follows from (9) and (13) that

k0(t) 
= E (Y

~~
) + h0(t)

and for p=l,2,...

Lf ”fk (t;t1,. .. ,t~)X t .. .X~ dt1. - .dt~,

= Lf.~~fh (t;t1,. . ~~~~~~ - . .X.~ dt1. ..dt a.s. (14)
1 p

If is the subspace of L
2

([a ,b]~) generated by the symmetric functions
{X
~ 

(w) . - .X ~ (w) , w€Q-~~ } where is the exceptional set in (14), then (14)
1 p

is equiva lent to

h (t) = Proj. k Ct)p 
~~~

Thus, in general , knowledge of the kernels {f~}~ and thus the kernels
determines only the projections of the kernels k~ onto M~. The kernels

wi ll be letermined from the kernels f~1 by k~ = ~~ only if the subspaces
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cons i st of a l l  symmetric func tions in L
2
([a ,b}11) .  An . equivalent condi-

tion is that if

R ( t 1,. .. ~t~;s1~ . .. ,s )  = E(X
~ 

.. .x
~ 

X5 . . .X
5 )1 p 1 p

and R denotes also the integral type operator in L2([a,b}~) with kernel

R~1 then R~ should be strictly positive definite, or the null space of

should be {o}.

Conversely, knowledge of the kernels k~ clearly determines the kernels
f~. This is quite obvious from (13). The precise relationship can be de-

rived by using the property

- .X~ dt~. . .dt~ = Proj Y~
1 p

I’ (15)

= ~ Lf.~~ fk (t;t1,. . ., t )Proj_ (X
t 

.. .X~ )dt1.. .dt
q=p q 1 q q

where is the closure in L2(X) of %, the set of all polynomials in the

elements of H(X) with degree p which are orthogonal to all polynomials with
degree � p-i. The projections of (X

~ - . .X~ ) onto can be expressed by
1 q

using the Grad-Barrett-Hermite polynomials (see Section II of Root (1965))
and then (15) will give each f~ in terms of k~. k~÷2 When only the
first P terms in (13) are present, the same will be true for (1) and in this
case f~ can be expressed in terms of k~. f~~1 in terms of k~~1~ f~~2 in

terms of k~_2 and ~~ f~.3 in terms of k~~3 and k~_ 1, etc. Again we wi l l

have in fact f~ = k~ and f~~1 = k~~_ 1 as shown in Root (1965), where the
specific expressions for P = 3 are also given.
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